

# HC1231 FSK/OOK Transceiver Module

#### 1.General:

The HC1231 is a highly integrated RF transceiver capable of operation over a wide frequency range, including the 433,868 and 915 MHz license-free ISM (Industry Scientific and Medical) frequency bands. Its highly integrated architecture allows for a minimum of external components whilst maintaining maximum design flexibility. All major RF communication parameters are programmable and most of them can be dynamically set. The HC1231 offers the unique advantage of programmable narrow-band and wide-band communication modes without the need to modify external components. The HC1231 is optimized for low power consumption while offering high RF output power and channelized operation. TrueRF<sup>™</sup> technology enables a low- cost external component count (elimination of the SAW filter) whilst still satisfying ETSI and FCC regulations.

#### **2.**APPLICATIONS:

- Automated Meter Reading
- Wireless Sensor Networks
- Home and Building Automation
- Wireless Alarm and Security Systems
- Industrial Monitoring and Control
- Wireless M-BUS

#### **3.FEATURES:**

- High Sensitivity: down to -120 dBm at 1.2 kbps
- High Selectivity: 16-tap FIR Channel Filter
- Bullet-proof front end: IIP3 = -18 dBm, IIP2 = +35 dBm, 80 dB Blocking Immunity, no Image Frequency response
- Low current: Rx = 16 mA, 100nA register retention
- Programmable Pout: -18 to +17 dBm in 1dB steps
- Constant RF performance over voltage range of chip
- FSK Bit rates up to 300 kb/s
- Fully integrated synthesizer with a resolution of 61 Hz
- FSK, GFSK, MSK, GMSK and OOK modulations
- Built-in Bit Synchronizer performing Clock Recovery
- Incoming Sync Word Recognition
- 115 dB+ Dynamic Range RSSI
- Automatic RF Sense with ultra-fast AFC
- Packet engine with CRC, AES-128 and 66-byte FIFO
- Built-in temperature sensor and Low Battery indicator





## **4.PIN DESCRIPTION**



| PIN No.  | Name  | I/O/P | Description                                          |
|----------|-------|-------|------------------------------------------------------|
| 1        | RESET | I/O   | Module Hardware Reset, low pulse active              |
| 2        | DIO0  | I/O   | Module Digital I/O 0, can define by module Register. |
| 3        | DIO1  | I/O   | Module Digital I/O 1, can define by module Register. |
| 4        | DIO2  | I/O   | Module Digital I/O 2, can define by module Register. |
| 5        | GND   | Р     | Module Power supply Negative, Groud                  |
| 6        | VDD   | Р     | Module Power supply Positive                         |
| 7        | DIO5  | I/O   | Module Digital I/O 5, can define by module Register  |
| 8        | SCK   | Ι     | SPI Module clock input                               |
| 9        | MISO  | 0     | SPI Master input and Slave output                    |
| 10       | MOSI  | Ι     | SPI Master output and Slave input                    |
| 11       | NSS   | Ι     | SPI Module Select control                            |
| 12       | NC    |       | Not connect                                          |
| 13       | ANT   | 0     | Module Antenna terminal, Default terminal            |
| 14,15,16 | GND   | Р     | Module power supply Negative, Ground                 |

P: is power supply



## 5.Electrical Characteristics 5.1.Absolute Maximum Ratings

S tresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Table Absolute Maximum Ratings

| Symbol | Description          | Min  | Мах  | Unit |
|--------|----------------------|------|------|------|
| VDDmr  | Supply Voltage       | -0.5 | 3.9  | V    |
| Tmr    | Temperature          | -55  | +115 | °C   |
| Тј     | Junction temperature | -    | +125 | °C   |
| Pmr    | RF Input Level       | -    | +6   | dBm  |

#### 5.2 Operating Range

Table Operating Range

| Symbol | Description                       | Min | Мах | Unit |
|--------|-----------------------------------|-----|-----|------|
| VDDop  | Supply voltage                    | 1.8 | 3.6 | V    |
| Тор    | Operational temperature range     | -40 | +85 | °C   |
| Clop   | Load capacitance on digital ports | -   | 25  | pF   |
| ML     | RF Input Level                    | -   | 0   | dBm  |

#### **5.3 Power Consumption**

Table Power Consumption Specification

| Symbol  | Description                        | Conditions                 | Min | Тур  | Мах | Unit |
|---------|------------------------------------|----------------------------|-----|------|-----|------|
| IDDSL   | Supply current in Sleep mode       |                            | -   | 0.1  | 1   | uA   |
| IDDIDLE | Supply current in Idle mode        | RC oscillator enabled      | -   | 1.2  | -   | uA   |
| IDDST   | Supply current in Standby mode     | Crystal oscillator enabled | -   | 1.25 | 1.5 | mA   |
| IDDFS   | Supply current in Synthesizer mode |                            | -   | 9    | -   | mA   |
| IDDR    | Supply current in Receive mode     |                            | -   | 16   | -   | mA   |



# HC1231 FSK/OOK Transceiver Module

| IDDT | RFOP = +17 dBm, on PA_BOOST<br>RFOP = +13 dBm, on RFIO pin<br>RFOP = +10 dBm, on RFIO pin<br>RFOP = 0 dBm, on RFIO pin<br>RFOP = | -<br>-<br>- | 95<br>45<br>33<br>20 |   | mA<br>mA<br>mA |  |
|------|----------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|---|----------------|--|
|      | RFOP = -1 dBm, on RFIO pin                                                                                                       | -           | 16                   | - | mA<br>mA<br>mA |  |

### 5.4 Frequency Synthesis

Table Frequency Synthesizer Specification

| Symbol | Description                                                              | Conditions                                                                                          | Min               | Тур                                    | Мах                | Unit                                   |
|--------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|----------------------------------------|--------------------|----------------------------------------|
| FR     | Synthesizer Frequency Range                                              | Programmable                                                                                        | 290<br>424<br>862 | -<br>-<br>-                            | 340<br>510<br>1020 | MHz<br>MHz<br>MHz                      |
| FXOSC  | Crystal oscillator frequency                                             | See section 7.1                                                                                     | -                 | 32                                     | -                  | MHz                                    |
| TS_OSC | Crystal oscillator wake-up time                                          |                                                                                                     | -                 | 250                                    | 500                | us                                     |
| TS_FS  | Frequency synthesizer wake-up time to PIILock signal                     | From Standby mode                                                                                   | -                 | 80                                     | 150                | us                                     |
| TS_HOP | Frequency synthesizer hop time<br>at most 10 kHz away from the<br>target | 200 kHz step<br>1 MHz step<br>5 MHz step<br>7 MHz step<br>12 MHz step<br>20 MHz step<br>25 MHz step |                   | 20<br>20<br>50<br>50<br>80<br>80<br>80 |                    | us<br>us<br>us<br>us<br>us<br>us<br>us |
| FSTEP  | Frequency synthesizer step                                               | FSTEP = FXOSC/2 <sup>19</sup>                                                                       | -                 | 61.0                                   | -                  | Hz                                     |
| FRC    | RC Oscillator frequency                                                  | After calibration                                                                                   | -                 | 62.5                                   | -                  | kHz                                    |
| BRF    | Bit rate, FSK                                                            | Programmable                                                                                        | 1.2               | -                                      | 300                | kbps                                   |
| BRO    | Bit rate, OOK                                                            | Programmable                                                                                        | 1.2               | -                                      | 32.768             | kbps                                   |

#### 5.5 Receiver

All receiver tests are performed with RxBw = 10 kHz (Single Side Bandwidth), receiving a PN15 sequence with a BER of 0.1% (Bit Synchronizer is enabled), unless otherwise specified. The LNA impedance is set to 200 Ohms, Blocking tests are performed with an unmodulated interferer. The wanted signal power for the Blocking Immunity, ACR, IIP2, IIP3 and AMR tests is set 3 dB above the nominal sensitivity level.

Table Receiver Specification

| Symbol | Description                       | Conditions                                                                               | Min    | Тур                  | Мах    | Unit              |
|--------|-----------------------------------|------------------------------------------------------------------------------------------|--------|----------------------|--------|-------------------|
| RFS_F  | FSK sensitivity, highest LNA gain | FDA = 5 kHz, BR = 1.2 kb/s<br>FDA = 5 kHz, BR = 4.8 kb/s<br>FDA = 40 kHz, BR = 38.4 kb/s | -<br>- | -118<br>-114<br>-105 | -<br>- | dBm<br>dBm<br>dBm |

bonnie@Ljelect.com

www.Ljelect.com



# HC1231 FSK/OOK Transceiver Module

|                   |                                                                                             | FDA = 5 kHz, BR = 1.2 kb/s*                                     | -           | -120               | -           | dBm            |
|-------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------|--------------------|-------------|----------------|
| RFS_O             | OOK sensitivity, highest LNA gain                                                           | BR = 4.8 kb/s                                                   | -           | -112               | -109        | dBm            |
| CCR               | Co-Channel Rejection                                                                        |                                                                 | -13         | -10                | -           | dB             |
| ACR               | Adjacent Channel Rejection                                                                  | Offset = +/- 25 kHz<br>Offset = +/- 50 kHz                      | -<br>37     | 42<br>42           | -           | dB<br>dB       |
| BI                | Blocking Immunity                                                                           | Offset = +/- 1 MHz<br>Offset = +/- 2 MHz<br>Offset = +/- 10 MHz | -<br>-<br>- | 66<br>71<br>79     | -<br>-<br>- | dB<br>dB<br>dB |
|                   | Blocking Immunity<br>Wanted signal at sensitivity<br>+16dB                                  | Offset = +/- 1 MHz<br>Offset = +/- 2 MHz<br>Offset = +/- 10 MHz | -<br>-<br>- | 62<br>65<br>73     | -<br>-<br>- | dB<br>dB<br>dB |
| AMR               | AM Rejection , AM modulated<br>interferer with 100% modulation<br>depth, fm = 1 kHz, square | Offset = +/- 1 MHz<br>Offset = +/- 2 MHz<br>Offset = +/- 10 MHz | -<br>-<br>- | 66<br>71<br>79     | -<br>-<br>- | dB<br>dB<br>dB |
| IIP2              | 2nd order Input Intercept Point<br>Unwanted tones are 20 MHz<br>above the LO                | Lowest LNA gain<br>Highest LNA gain                             | -           | +75<br>+35         | -           | dBm<br>dBm     |
| IIP3              | 3rd order Input Intercept point<br>Unwanted tones are 1MHz and<br>1.995 MHz above the LO    | Lowest LNA gain<br>Highest LNA gain                             | -<br>-23    | +20<br>-18         | -           | dBm<br>dBm     |
| BW_SSB            | Single Side channel filter BW                                                               | Programmable                                                    | 2.6         | -                  | 500         | kHz            |
| IMR_OOK           | Image rejection in OOK mode                                                                 | Wanted signal level = -106 dBm                                  | 27          | 30                 | -           | dB             |
| TS_RE             | Receiver wake-up time, from PLL locked state to <i>RxReady</i>                              | RxBw = 10 kHz, BR = 4.8 kb/s<br>RxBw = 200 kHz, BR = 100 kb/s   | -           | 1.7<br>96          | -           | ms<br>us       |
| TS_RE_AGC         | Receiver wake-up time, from PLL<br>locked state, AGC enabled                                | RxBw= 10 kHz, BR = 4.8 kb/s<br>RxBw = 200 kHz, BR = 100 kb/s    | -           | 3.0<br>163         |             | ms<br>us       |
| TS_RE_AGC<br>&AFC | Receiver wake-up time, from PLL<br>lock state, AGC and AFC enabled                          | RxBw= 10 kHz, BR = 4.8 kb/s<br>RxBw = 200 kHz, BR = 100 kb/s    |             | 4.8<br>265         |             | ms<br>us       |
| TS_FEI            | FEI sampling time                                                                           | Receiver is ready                                               | -           | 4.T <sub>bit</sub> | -           | -              |
| TS_AFC            | AFC Response Time                                                                           | Receiver is ready                                               | -           | 4.T <sub>bit</sub> | -           | -              |
| TS_RSSI           | RSSI Response Time                                                                          | Receiver is ready                                               | -           | 2.T <sub>bit</sub> | -           | -              |
| DR_RSSI           | RSSI Dynamic Range                                                                          | AGC enabled Min<br>Max                                          | -           | -115<br>0          | -           | dBm<br>dBm     |



## 5.6 Transmitter

Transmitter Specification

| Symbol         | Description                                                            | Conditions                                                               | Min | Тур        | Max | Unit       |
|----------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|-----|------------|-----|------------|
| RF_OP          | RF output power in 50 ohms<br>On RFIO pin                              | Programmable with 1dB steps Max<br>Min                                   | -   | +13<br>-18 | -   | dBm<br>dBm |
| RF_OPH         | Max RF output power, on PA<br>BOOST pin                                | With external match to 50 ohms                                           | -   | +17        | -   | dBm        |
| $\Delta RF_OP$ | RF output power stability                                              | From VDD=1.8V to 3.6V                                                    | -   | +/-0.3     | -   | dB         |
| PHN            | Transmitter Phase Noise                                                | 50 kHz Offset from carrier<br>868 / 915 MHz bands<br>434 / 315 MHz bands | -   | -95<br>-99 |     | dBc/<br>Hz |
| ACP            | Transmitter adjacent channel<br>power (measured at 25 kHz off-<br>set) | BT=0.5 . Measurement conditions as defined by EN 300 220-1 V2.1.1        | -   | -          | -37 | dBm        |
| TS_TR          | Transmitter wake up time, to the first rising edge of DCLK             | Frequency Synthesizer enabled, <i>PaR-amp</i> = 10 us, BR = 4.8 kb/s.    | -   | 120        | -   | us         |



## 5.7 Digital Specification

Conditions: Temp = 25°C, VDD = 3.3V, FXOSC = 32 MHz, unless otherwise specified.

#### Table Digital Specification

| Symbol              | Description                           | Conditions                                            | Min | Тур | Max | Unit |
|---------------------|---------------------------------------|-------------------------------------------------------|-----|-----|-----|------|
| V <sub>IH</sub>     | Digital input level high              |                                                       | 0.8 | -   | -   | VDD  |
| V <sub>IL</sub>     | Digital input level low               |                                                       | -   | -   | 0.2 | VDD  |
| V <sub>OH</sub>     | Digital output level high             | Imax = 1 mA                                           | 0.9 | -   | -   | VDD  |
| V <sub>OL</sub>     | Digital output level low              | lmax = -1 mA                                          | -   | -   | 0.1 | VDD  |
| F <sub>SCK</sub>    | SCK frequency                         |                                                       | -   | -   | 10  | MHz  |
| t <sub>ch</sub>     | SCK high time                         |                                                       | 50  | -   | -   | ns   |
| t <sub>cl</sub>     | SCK low time                          |                                                       | 50  | -   | -   | ns   |
| t <sub>rise</sub>   | SCK rise time                         |                                                       | -   | 5   | -   | ns   |
| t <sub>fall</sub>   | SCK fall time                         |                                                       | -   | 5   | -   | ns   |
| t <sub>setup</sub>  | MOSI setup time                       | from MOSI change to SCK rising edge                   | 30  | -   | -   | ns   |
| t <sub>hold</sub>   | MOSI hold time                        | from SCK rising edge to MOSI change                   | 60  | -   | -   | ns   |
| t <sub>nsetup</sub> | NSS setup time                        | from NSS falling edge to SCK rising edge              | 30  | -   | -   | ns   |
| t <sub>nhold</sub>  | NSS hold time                         | from SCK falling edge to NSS rising edge, normal mode | 100 | -   | -   | ns   |
| t <sub>nhigh</sub>  | NSS high time between SPI<br>accesses |                                                       | 20  | -   | -   | ns   |
| T_DATA              | DATA hold and setup time              |                                                       | 250 | -   | -   | ns   |



### 6. Module Package Outline Drawing

Unit: mm



## 7. Ordering Information

| Model  | Part Number | Operation Band |
|--------|-------------|----------------|
| HC1231 | HC1231-315  | 315MHz         |
| HC1231 | HC1231-433  | 433MHz         |
| HC1231 | HC1231-868  | 868MHz         |
| HC1231 | HC1231-915  | 915MHz         |



## 8. Module Revisions

| Revisions | Date       | Updated History                            |
|-----------|------------|--------------------------------------------|
| Devid 0   | March 2014 |                                            |
| Rev1.0    | March 2014 | The first final release                    |
| Rev1.1    | June 2014  | Update Module parameter for 868MHZ. 915MHZ |
| Rev1.2    | March 2015 | Update Module ordering information         |
|           |            |                                            |

## 9. Importance Notice

The HC1231 datasheet will be changed by LJ ELECTRONICS TECHNOLOGY LIMITED according to the module design.

## 10.Contact us

E-mail: <u>bonnie@Ljelect.com</u> <u>Http://www.Ljelect.com</u>

LJ ELECTRONICS TECHNOLOGY LIMITED

TEL: 0769-83021397 FAX: 0769-82828646

The 2nd Floor (west side), JieAn Industrial Park, The 1st Industrial Road,

TuTang Village, ChangPing Town, DongGuan City, GuangDong, China